Molecular electronics

Aviram-Ratner concept.
Functional molecular
electronics: rectification and
memory



Non-linear Molecular elements

* To achieve computing with molecular
elements we need to obtain non-linear
elements:

— diodes (rectifiers), or
— negative differential resistance devices (NDR), or
— three-terminal devices

* To obtain molecular memory we need
switching



Molecular devices

* The challenges:

—how to attach molecules to the
electrodes

—how to arrange them in the same
direction



Rectification processes

« S-rectifiers: rectification due to Shottky barrier
formed at metal-organic interfaces

* A-rectifiers: rectification due to assymetric
placement of the molecule (on part of the
molecule has good MO overlap with the
electrode and the other one not)

o U-rectifiers: unimolecular rectification due to
assimetric transport between the MOs.



Molecular rectifier (Diode)

* The idea (Aviram and Ratner, 1974):
donor-acceptor system separated by a spacer so
their TT-systems don’t overlap.

* the system will have preferential charge transfer
direction
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Molecular rectifier

vacuum level (atom or metal has lost 1 electron)
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Molecular rectifier

* Energy levels for some common donor and
acceptor groups:
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Molecular Rectifiers via LB process

« Langmuir-Blodgett technique can produce mono- (or
multi-) layers of uniformly oriented molecules
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Molecular Rectifiers via LB process

* The monolayer could be than transferred to a

solid support:
Langmuir-Schaefer

Vertical transfer

Solid moving upward
through monolayer
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Molecular Rectifiers via LB process

LB (or LS) process occurs via physisorption

« Advantages:
— monolayer density and arrangement can be controlled via LB process (prior to
deposition)
— Shottky barrier at the surface is avoided
« Disadvantages
— monolayer structure can change after transfer
— other adsorbates present on the surface are not displaced

Chemisorbed layers (SAMs)

« Advantages

— chemical reaction displaces adsorbates

— once bound the adsorbed species are difficult to remove and re-arrange
« Disadvantages

— uncertain degree of coverage

— possibility of further chemical reactions

— formation of surface dipoles (e.g. Au-thiol bond is particularly polarized)



Rectification with Monolayers: Experimental

* The most challenging issue:
Deposition of the top metal electrode in
metal-organic-metal sandwich without
damaging the organic layer or creating shorts

 First achieved by Roy Sambles group at

Exeter University using Mg films

Sambles et al, J.Chem.Soc.Chem.Commun. 1374
(1990)

however, Mg film can create Shottky barrier on
TCNQ due to interfacial salts Mg*?TCNQ-~2and
Mg*2(TCNQ1),.



Rectification with Monolayers: Experimental

"Cold gold” evaporation

Metzger et al, J.Phys.Chem B105, 7280 (2001)
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Langmuir-Blodgett Approach to MR

Molecular rectifier:

Metzger, R. M.; Xu, T.; Peterson, I. R.,. Journal of Physical Chemistry B 2001, 105, (30), 7280-7290.

 Arachidic acid C,4H;,COOH
deposited with the same
technique produces
symmetric IV-curves

+ C,sH,,Q-3CNQ produces
asymmetric curves with
rectification ratio RR= 26 @
1.5V

 Repeated cycles reduce
rectification ration presumably
due to “flipping” the molecules
in high electric field (1.5V
across 2.3 nm = 0.65 GV/m!)
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Langmuir-Blodgett Ap

* Very rigid
monolayer with
stable rectification
ratio based on C60

Metzger et al,
J.Phys.Chem B107, 1021
(2003).
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Langmuir-Blodgett Approach to MR

* Results and Challenges * ®)

— Current always flows better T e - '@ e
from Donor to Acceptor as IS )y l FISW
predicted by Aviram and ’ffj %ﬂ B?ﬁﬂ idﬁﬁ
Ratner.

— Many devices are plaqued by
filamentary growth at gold
electrodes

— Can we measure properties of the
current carrying monolayer?
— What happens when the molecule goes
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from ground to excited state (image ] 8] hACLargg:?gnal
dipoles in metal electrodes)? 1 N ﬂ
— Can a three-terminal build using this ﬂ

technique?



Switches and Memory

« Bistable molecular systems:
molecules that can exist in 2
(meta)stable states with different

properties

» switches can be triggered by light,

pH etc.
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Switches and Memory

* light triggered switch

14 14

open form closed form

M = [Ru(NH3)s|(PFg)2

A. Feméndez-Acebes, J.-M. Lehn, Chem. Eur. J.,6,3285(1989)

J. M. Endtner, F. Effenb AL H; H. Por, J. Am. Chem. Soc.,122,3037(2000) K. Yagi, C. F. Soong, M. Irie, J. Org. Chem..66,5419(2001)




Switches and Memory

« Voltage triggered s i e
switch:
catenane molecule can
be switched between
two state (rotation ofa

ring) by applying
positive (+2V) or

negative pulses (-2V), 3
reading voltage is 0.1V 2
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Fixed three terminal technique




Theory considerations: Coulomb blockade

« Charging effects on the nanoscale are important

Geometrical effect:
depends on the particle size
and geometry of the contacts

1nm cluster: Ec~0.5eV




Coulomb blockade

» "diamond” plot for an
SET
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SET on a single molecule

« Kubatkin et al, Nature 425, p.698 (2003)
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SET on a single molecule

e Kilhatkin et Al Naftiire 425 n 698 (72003)
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* Only two slopes are present, meaning we have a single island
SET

 size of the diamonds is different, meaning we have smth on
top of the Coulomb blockade



SET on a single molecule

« Kubatkin et al, Nature 425, p.698 (2

* Modelling results: due to image
charges the charge in the molecule is
localized close to the electrodes




